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A new geometrically conservative arbitrary Lagrangian–Eulerian (ALE) formulation is pre-
sented for the moving boundary problems in the swirl-free cylindrical coordinates. The
governing equations are multiplied with the radial distance and integrated over arbitrary
moving Lagrangian–Eulerian quadrilateral elements. Therefore, the continuity and the geo-
metric conservation equations take very simple form similar to those of the Cartesian coor-
dinates. The continuity equation is satisfied exactly within each element and a special
attention is given to satisfy the geometric conservation law (GCL) at the discrete level.
The equation of motion of a deforming body is solved in addition to the Navier–Stokes
equations in a fully-coupled form. The mesh deformation is achieved by solving the linear
elasticity equation at each time level while avoiding remeshing in order to enhance numer-
ical robustness. The resulting algebraic linear systems are solved using an ILU(k) precondi-
tioned GMRES method provided by the PETSc library. The present ALE method is validated
for the steady and oscillatory flow around a sphere in a cylindrical tube and applied to the
investigation of the flow patterns around a free-swimming hydromedusa Aequorea victoria
(crystal jellyfish). The calculations for the hydromedusa indicate the shed of the opposite
signed vortex rings very close to each other and the formation of large induced velocities
along the line of interaction while the ring vortices moving away from the hydromedusa. In
addition, the propulsion efficiency of the free-swimming hydromedusa is computed and its
value is compared with values from the literature for several other species.

Published by Elsevier Inc.
1. Introduction

Moving boundary problems in computational fluid dynamics have become of great interest due to their wide range of
application areas. Examples include a wide variety of fluid-structure interaction problems such as wing flutter and tail buf-
feting, a large class of free-surface problems, fluid-particle interactions, swimming/flying animals, rotor-fuselage aerody-
namic interactions, etc. In order to simulate the flow problems with moving boundaries, several numerical approaches
have been presented in the literature including the arbitrary Lagrangian–Eulerian (ALE) method [20], the immersed bound-
ary method [37,32] and the fictitious domain method [18].

In the ALE method, the mesh follows the interface between the fluid and solid boundary and the governing equations are
discretized on an unstructured moving mesh. This differs from the standard Eulerian formulation in a way that the mesh
movement has to fulfill special conditions in order to maintain the accuracy and the stability of the time integration scheme.
This condition is satisfied by the enforcement of the so-called geometric conservation law (GCL) as coined by Thomas and
er Inc.
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Lombard [48]. The geometric conservation law requires that the volumetric increment of a moving cell must be equal to the
summation of the volumes swept by its surfaces that close the volume. It can be interpreted such that a numerical scheme
should preserve a uniform flow solution exactly independent of the mesh motion. Although the GCL is satisfied easily in the
continuous sense, their discrete implementation may not be trivially satisfied. The ALE time integration scheme developed
by Koobus and Farhat [26] is based on more continuous time integration of the fluxes. Such a scheme offers second-order
accuracy in time obeying the GCL, but the integration will be computationally expensive. Geuzaine et al. [17] have showed
that the GCL is neither a necessary nor a sufficient condition condition for an ALE scheme to preserve its order of time-
accuracy established on fixed meshes. Recently, Mavriplis and Yang [29] have proposed a general framework for deriving
high-order temporal schemes which respects the GCL. In the present work, a geometrically conservative arbitrary Lagrang-
ian–Eulerian formulation is presented in the swirl-free cylindrical coordinates. The governing equations are multiplied by
the radial distance r so that the GCL takes very simple form similar to that of the Cartesian coordinates. In addition, this will
allow us to avoid singularities related to 1=r and 1=r2 terms in the cylindrical coordinates and result in better conditioned
linear systems. Although similar modifications to the Navier–Stokes equations are presented in the literature [21], they are
not considered in the view of the GCL.

The modified governing equations are discretized using the semi-staggered finite volume method [41,43] on all-quadri-
lateral unstructured moving meshes while allowing to the use of structured meshes as well. The continuity equation is sat-
isfied exactly within each element and a special attention is given to satisfy the geometric conservation law at discrete level.
The choice of the present semi-staggered approach leads to better pressure coupling compared to non-staggered (collocated)
approach while being capable of handling non-Cartesian grids. In addition, it eliminates the need for a pressure boundary
condition since it is defined at interior points. Furthermore, the summation of the continuity equation within each element
can be exactly reduced to the domain boundary, which is important for the global mass conservation. But the most appealing
feature of the method is leading to very simple algorithm consistent with the boundary and initial conditions required by the
Navier–Stokes equations. Recently, the semi-staggered arrangement of variables has been used by Rida et al. [38], Kobayashi
et al. [25] and Wright and Smith [50] for triangular, quadrilateral and hybrid meshes in 2D. The extension of the semi-stag-
gered approximation to arbitrary Lagrangian–Eulerian form is reported by Hirt et al. [20] and Smith and Wright [47]. The
convective fluxes in the momentum equations are approximated using both the second-order simple averages and the sec-
ond-order upwind least square interpolation [2,4] in order to maintain stability at higher Reynolds numbers. The mesh mo-
tion is determined by solving the linear elasticity equation similar to the work of Refs. [22,14] at each time level while
avoiding remeshing in order to enhance numerical robustness.

The resulting algebraic linear systems are solved using the GMRES method [40] with the restricted additive Schwarz pre-
conditioner. The implementation of the preconditioned Krylov subspace algorithm and the restricted additive Schwarz pre-
conditioner were carried out using the PETSc [3] software package developed at the Sandia National Laboratories. The
computational meshes are partitioned using the METIS library [24] and within each sub-domain incomplete LU (ILU(k)) pre-
conditioner is employed. In order to avoid the zero-block in the saddle point problem, we use an upper triangular right pre-
conditioner which results in a scaled discrete Laplacian instead of a zero block in the original system. Unfortunately, this
leads to a significant increase in the number of non-zero elements following the matrix-matrix multiplication. However,
the new system may be efficiently preconditioned using ILU(k) preconditioner. The algebraic linear systems are solved in
a fully-coupled manner including the equation of motion of a deforming body. This will lead to more robust solution tech-
niques compared to SIMPLE, SIMPLER, etc. type decoupled solution techniques. Convergence of these decoupled solution
techniques can often be problematic and may even result in nonconvergence. An extensive review on the fully-coupled iter-
ative solvers for the incompressible Navier–Stokes equations may be found in [44].

The present ALE formulation is applied to the free-swimming oblate hydromedusa Aequorea victoria (crystal jellyfish) in
order to investigate the propulsion mechanism of an oblate hydromedusa. The experimental observations indicate that the
oblate medusae create more complex wake structure than those observed of more prolate jetting medusa and swim with jet-
paddling mode of propulsion [30]. However, this propulsion mechanism for the oblate medusae is not well understood in the
literature. The present numerical simulations for the free-swimming oblate hydromedusa A. victoria indicate the shed of the
opposite signed vortex rings very close to each other and the formation of large induced velocities along the line of interac-
tion while the ring vortices moving away from the hydromedusa. This mechanism of propulsion is very similar to the exper-
imental observations of Dabiri et al. [12] for the hydromedusa Aurelia aurita. Although Ford et al. [15] have reported series of
toroid vortex rings traveling along the medusan oral arms and tentacles, which is very similar to our fixed medusa simula-
tions, this is particularly due to its very large tentacles causing the hydromedusa Chrysaora quinquecirrha hardly move
through the surrounding fluid.

The remainder of this paper is organized as follows: In Section 2 the present ALE method is described along with the
geometric conservation law and the mesh deformation technique. Validation of the present numerical method is given in
Section 3. This is followed by the discussion on the flow patterns generated by the free swimming of the hydromedusa
A. victoria. Conclusions are provided in Section 4.

2. Mathematical and numerical formulation

The incompressible Navier–Stokes equations that govern the swirl-free axisymmetric viscous fluid flow in the Eulerian
cylindrical coordinates system ðx; rÞ can be written in dimensionless form as follows: the continuity equation



4590 M. Sahin, K. Mohseni / Journal of Computational Physics 228 (2009) 4588–4605
� @u
@x
� @v
@r
� v

r
¼ 0 ð1Þ
the momentum equations
Re
@u
@t
þ u

@u
@x
þ v @u

@r

� �
þ @p
@x
¼ @

2u
@x2 þ

@2u
@r2 þ

1
r
@u
@r

ð2Þ

Re
@v
@t
þ u

@v
@x
þ v @v

@r

� �
þ @p
@r
¼ @

2v
@x2 þ

@2v
@r2 þ

1
r
@v
@r
� v

r2 ð3Þ
In these equations ðu;vÞ are the axial and radial velocity components, respectively, p is the pressure and Re is the dimension-
less Reynolds number. After multiplying the equations by the radial distance r and then modifying them, the continuity
equation becomes
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Integrating the differential Eqs. (4)–(6) over an arbitrary moving Eulerian–Lagrangian control volume XðtÞ with boundary
@XðtÞ and using the Reynolds transport theorem [16] yield
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where ð _x; _rÞ are the axial and radial grid velocity components, respectively. The GCL in the cylindrical coordinate system
takes the following form:
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This is very similar to the GCL equation in the Cartesian coordinate system. If the coordinate transformation ðy ¼ r2=2Þ pro-
posed in Ref. [33] is used it can be exactly reduced to the same form. Although, this transformation does not allow us to avoid
the singularities related to 1=r and 1=r2 terms, one may use the coordinate singularity treatment given in [35]. The above
governing Eqs. (7)–(9) are discretized by extending the dilation-free semi-staggered finite volume method [41,43] to the
cylindrical coordinates. However, the numerical discretization should ensure that the GLC is satisfied at the discrete level
[48].

2.1. The discrete geometric conservation law

The geometric conservation law demands that the volumetric increment of a moving element must be equal to the
summation of the volumes swept by its surfaces that close the volume. This can also be interpreted such that the grid
positions and velocities are evaluated in a certain way that a numerical scheme preserves a constant solution exactly inde-
pendent of the mesh motion. Although the GCL is satisfied easily in the continuous sense, their discrete implementation
may not be trivially satisfied. In the present work, the GCL is satisfied over the dual finite volume constructed by connect-
ing the centroids ci of the quadrilateral elements which share a common vertex as seen in Fig. 1. The details of the two-
dimensional dual control volume surrounding a node P at time levels n and nþ 1 is shown in Fig. 2. Then the GCL equation
is discretized as follows:
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Fig. 1. Two-dimensional unstructured mesh with a dual control volume surrounding a node P.
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where m is the summation over all dual control volume edges, l is the number of quadrilateral elements which share a com-
mon vertex, An and Anþ1 are the surface area of the triangle elements at time levels n and nþ 1, respectively, rn

G and rnþ1
G are

the geometric centroid of the triangle elements and �rG is the geometric centroid of the surface swept by each edge
Sn

1; S
n
2; S

n
3; S

n
4 and Sn

5 shown in Fig. 2. The grid velocity components ð _x; _rÞ are computed at the two endpoints of each dual
control volume edge using
_x ¼ xnþ1 � xn

Dt
ð12Þ

_r ¼ rnþ1 � rn

Dt
ð13Þ
and the simple averages are used for the face value. The present discretization is very similar to the Crank–Nicholson scheme
where the surface integral of the Eq. (10) is evaluated at both time levels n and nþ 1. However, the geometric centroid value
�rG is used for the radial distance in the surface integral rather than the simple average value. The present discretization sat-
isfies the GCL and the proof will be given below.

In fact, even though the left-hand side of the Eq. (10) is an area integral this integral is actually equal to the volume gen-
erated by rotating the surface element about the symmetry axis in the cylindrical coordinates when it is multiplied by 2p.
Therefore, the GCL can be easily verified at the discrete level by keeping in mind that the volumetric increment of a moving
cell should be equal to the summation of the volumes swept by the surfaces that close the volume. The volume generated by
rotating the surface element about the symmetry axis can be easily computed using the Pappus’s second theorem which
states that the volume V of a solid of revolution generated by rotating a plane surface area A about an axis is equal to the
product of the area A and the distance between the axis and its geometric centroid. Therefore, the GCL Eq. (10) can be written
Vnþ1 � Vn
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where Am is the area swept by each edge of the quadrilateral element shown in Fig. 2 and �rG is the geometric centroid of the
area Am. The area created by sweeping the edge Sn

1 can be computed from
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where the Sn
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1 ;R1 and R2 are schematic in Fig. 2. In here, the terms Sn

1 and Snþ1
2 correspond to the surface integrals at time

levels n and nþ 1 and the simple averages of the terms R1 and R2 correspond to the average grid velocity vector multiplied
by Dt. This means that the GCL law is satisfied provided that the grid velocities are computed according to the Eqs. (12) and
(13) and the r term in the surface integral of the Eq. (10) is computed from the geometric centroid of the surface swept by
each edge.
2.2. Numerical discretization

The momentum Eqs. (8) and (9) are also discretized over the dual finite volume where the GCL is satisfied exactly at the
discrete level. The reason to utilize the present centroid-dual polyhedral finite volume is due to its superior stability prop-
erties on highly irregular meshes compared to the medial-dual finite volume [1]. This is an important issue for ALE schemes
where poor quality meshes could be encountered easily. The discrete contribution from cell c1 to cell c2 shown in Fig. 1 is
given below for each term of the momentum equation in the axial direction.
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The convective term due to mesh motion
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The convective term due to fluid motion
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In here, AP12 is the area between the points P; c1 and c2;�rG is the geometric centroid of the area swept by the dual edge S1

between the time levels n and nþ 1, Dx12 ¼ x2 � x1 and Dr12 ¼ r2 � r1. It should be noted that the use of the simple averages
instead of �rG in the Eq. (17) will violate the GCL. Similarly, the use of �rG in the Eq. (18) will violate a constant solution sincePl

m¼1�rGm Drm �
Pl

m¼1�rGm Dxm – 0, where m is the summation over the dual finite volume edges. This means that the satisfac-
tion of the GCL Eq. (10) alone does not preserve the constant solution exactly independent of the mesh motion. Although, the
satisfaction of the GCL is enough for the constant solution in the Cartesian coordinates, this is due the fact thatPl

m¼1Drm �
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m¼1Dxm ¼ 0. Therefore, a special care should be given to the convective fluxes due to fluid motion and these
fluxes should be integrated in a similar manner to the continuity equation. Otherwise, a source term will be created since
divu – 0 at the discrete level and it may lead the divergence of a numerical algorithm. The velocity values at the element
centroids ci is computed from the element vertex values using the simple averages and the gradient of velocity components
are calculated from the Green’s theorem.
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where the line integral on the right-hand side of the Eqs. (21) and (22) is evaluated using the mid-point rule on each of the
element faces. The contribution from the other cells are also calculated in a similar manner. The discretization of the radial
momentum equation follows very closely the ideas presented here and therefore is not repeated here. The continuity Eq. (7)
is integrated within each elements and evaluated using the mid-point rule on each of the element faces. The discretization of
above equations leads to a saddle point problem of the form:
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where A11 is the convection diffusion operator, A12 is the pressure gradient operator and A21 is the divergence operator. In
here A22 and b2 are zero and A12 – A>21. Although the system matrix of (23) is indefinite due to zero diagonal block, recent
results indicate that indefiniteness of the problem does not represent a particular difficulty and a recent review of the iter-
ative methods for solving large saddle point problems may be found in [6,39,44]. However, due to the zero diagonal block
resulting from the divergence-free constraint, an ILU(k) type preconditioner cannot be used directly for the saddle point
problem. Here, we consider an upper triangular right preconditioner in order to avoid problems arising from the zero block.
The modified system becomes
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and the zero block is replaced with �A21A12, which is a scaled discrete Laplacian. Unfortunately, this leads to a significant
increase in the number of non-zero elements due to the matrix–matrix multiplication. However, the new system may be
solved efficiently by using preconditioned Krylov subspace methods. The implementation of the preconditioned Krylov
subspace algorithm and the matrix–matrix multiplications were carried out using the PETSc [3] software package devel-
oped at the Sandia National Laboratories. Although there are several Krylov subspace algorithms readily available in the
PETSc library, we only employ the GMRES algorithm [40] for the problems presented in this paper, due to its stability. The
new system is precondioned using the restricted additive Schwarz preconditioner. The computational mesh is partitioned
using the METIS library [24] and for each sub-block an ILU(k) preconditioner with reverse Cuthill–McKee ordering [11] is
used.

In addition to the simple averages for convective term in the Eqs. (17) and (18) a second-order upwind least square inter-
polation [4,2] is also used in order to extrapolate the velocity values to the boundaries of the dual finite volume elements at
high Reynolds numbers. The use of present least square approximation to the gradient term in order to compute the convec-
tive term results in the same coefficients computed from the second-order upwind interpolation on uniform Cartesian
meshes. Therefore, our approximation is second-order similar to the second-order upwind interpolation.

2.3. Mesh motion

The ALE formulation requires a scheme for moving mesh vertices as the boundaries of a computational domain translate,
rotate and deform. Several mesh deforming algorithms have been presented in the literature including the spring analogy
[5], the elastic medium analogy [22], the edge swapping algorithm [13] and the remeshing algorithm [23]. In the present
mesh moving scheme we assume that computational domain is made of linear elastic materials and the equations of linear
elasticity are solved in order to obtain the displacement of each vertex along with the incompressible Navier–Stokes equa-
tions. The equations of the linear elasticity are given in the Cartesian coordinate system ðx; yÞ by
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where ðq1; q2Þ is the displacement vector and k and l are the Lame’s constants. These terms can be expressed in terms of
Young’s modulus E and Poisson’s ratio m as
k ¼ mE
ð1þ mÞð1� 2mÞ ; l ¼ E

2ð1þ mÞ ð27Þ
Although the solution of the above elasticity equations with Dirichlet boundary condition is generally enough for small
deformations it may lead to entanglement of small size quadrilateral meshes close to the domain boundary for large defor-
mations. In order to enhance the robustness of the method the stiffness of small elements close to the domain boundary are
increased by modifying the Young’s module based on the distance function dðE ¼ Aþ B=dÞ. In addition, k and l values are
replaced by k ¼ �E and l ¼ E. The elasticity equations are discretized on the initial mesh in a similar manner to the momen-
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tum equations given in Section 2.2. Therefore, the global stiffness matrix and its preconditioner are constructed only once
during the first step. The quadrilateral elements close to wall surfaces exhibit good orthogonality for the present parameters.
However, the use of a constant E value with k ¼ �E and l ¼ E leads to the Laplace equation and it is not as robust as the
solution of the elasticity equations. The robustness of the method can be further increased by defining more complex
non-linear relation between the strain tensor and the displacement vector as given in Ref. [14]. However, this gain is accom-
plished with a significant increase in computational cost.
3. Numerical results

In this section numerical results are presented using the present arbitrary Lagrangian–Eulerian method described in Sec-
tion 2. The first numerical results are presented for validation and assessment of accuracy. Then the results are followed by
the numerical solution of the flow patterns around the free-swimming hydromedusa A. victoria. The present numerical cal-
culations have been performed on the Phantom Linux Cluster and the IBM Machine Bluefire at NCAR.

3.1. Numerical validation

The first set of validation cases corresponds to the steady flow past a sphere in a cylindrical tube. For this problem we
consider a sphere of radius R positioned symmetrically within a cylindrical tube of radius 2R. The length to diameter ratio
of the tube is approximately 20. The dimensionless parameters are the Reynolds number Re ¼ 2qhUiR=l and the Strouhal
number St ¼ xR=hUi. The physical parameters are the density q, the average velocity at the inlet hUi, the viscosity of the fluid
l and the angular frequency x. The boundary conditions are the fully developed pipe (Hagen–Poiseuille) flow velocity
boundary conditions at the inlet and natural (traction-free) boundary conditions at the outlet. No-slip zero velocity boundary
conditions are imposed on all solid walls. Along the axis of symmetry the radial velocity component is set to zero meanwhile
the axial momentum equation is solved numerically for the axial velocity component. In order to investigate the mesh
dependency of the solutions, four different meshes are employed: mesh M1 with 20,552 node points and 20,064 elements,
mesh M2 with 78,628 node points and 77,670 elements, mesh M3 with 318,728 node points and 316,794 elements and mesh
M4 with 1,059,082 node points and 1,055,740 elements. The successive meshes are generated by multiplying the mesh sizes
by 1/2 in each direction and the details of the meshes are provided in Table 1. All the meshes are stretched next to the sphere
surface and the lateral solid walls as seen in Fig. 3 and the mesh refinements in these regions are nested within the succes-
sive coarse meshes in order to have more uniform mesh refinement. The rest of computational domain is meshed using the
paving algorithm provided in the CUBIT mesh generation environment [7]. The governing equations are solved together with
the associated boundary conditions at the several different Re numbers as given in Table 2 and the computed drag coefficient
Cd ¼ 2Fx=qhUi2pR2 at Re ¼ 100 is compared with the result of Sheard and Ryan [46]. The numerical value of Sheard and Ryan
[46] is obtained using the spectral element method and a good agreement is seen between the present value and that of
Sheard and Ryan [46]. In order to estimate the spatial convergence the present method a relationship is sought between
the minimum tangential mesh spacing on the sphere surface DSmin=R and the drag coefficient Cd in the form of
Cd ¼ Aþ BðDSmin=RÞn similar to the reference [42]. For this purpose, we use the meshes M2–M4 since the computational
mesh M1 is relatively very coarse. Then the drag coefficient based on mesh spacing is estimated to be
Cd ¼ 3:8189þ 2:7378ðDSmin=RÞ2:03. Therefore, the present numerical scheme can actually achieve second-order spacial accu-
racy in the swirl-free cylindrical coordinates since the governing equations are multiplied with the radial distance r so that
the singularities related to 1=r and 1=r2 terms are removed. Although, the computed zero mesh size drag coefficient is
slightly lower than the value of Sheard and Ryan [46] this is due to fact that the value computed by the authors is not mesh
independent. The computed contours of u-velocity component with streamlines are given in Fig. 4 for Re ¼ 1 and Re ¼ 100.
The streamlines indicate significant delay of the critical Reynolds number for the flow separation or wake formation beyond
Recrit > 20 compared to the unbounded case. In addition, the computed drag factor F� ¼ Fx=6plhUiR is compared with the
numerical result of Owens and Phillips [36] for the Stokes flow around a rigid sphere falling along the axis of a cylindrical
tube with a radius of 2R. The numerical results of Owens and Phillips [36] is also obtained using the spectral element method
and the authors showed that the drag factor value is converged to a mesh independent value ðF� ¼ 5:9474Þ as the mesh is
refined. The mesh convergence of the drag factor F� is also given in here using the meshes in Table 1 and the results are com-
pared with the value of Owens and Phillips [36]. The comparison shows excellent agreement and the results converge to-
wards the mesh independent value of Owens and Phillips [36] as seen in Table 3. If we repeat the convergence analysis
Table 1
Description of quadrilateral meshes for the viscous flow past a sphere in a cylindrical tube. DSmin=R and Drmin=R are the minimum tangential and normal mesh
spacing on the sphere surface.

Mesh Number of nodes Number of elements DSmin=R Drmin=R DOF

M1 20,552 20,064 0.078540 0.005499 61,168
M2 78,628 77,670 0.039270 0.002544 234,926
M3 318,728 316,794 0.019635 0.001224 954,250
M4 1,059,082 1,055,740 0.009817 0.000601 3,173,904



Fig. 3. The computational coarse mesh M1 for the flow past a sphere in a circular tube with 20,552 and 20,064 elements.

Table 2
The comparison of the drag coefficient Cd ¼ 2Fx=qhUi2pR2 for the flow past a sphere in a circular tube.

Re M1 M2 M3 M4 Sheard and Ryan [46]

1 2:3978� 102 2:3980� 102 2:3984� 102 2:3984� 102 –
10 2:4580� 101 2:4547� 101 2:4545� 101 2:4545� 101 –
20 1:2893� 101 1:2858� 101 1:2853� 101 1:2852� 101 –
40 7.2053 7.1783 7.1730 7.1719 –
100 3.8341 3.8227 3.8198 3.8191 3.8196

Fig. 4. The computed contours of u-velocity component with streamlines for the flow past a sphere in a cylindrical tube at Re ¼ 1 [a] and Re ¼ 100 [b] on
mesh M3.

Table 3
The comparison of the drag factor F� ¼ Fx=6plhUiR for a free falling sphere in a cylindrical tube for the Stokes flow.

M1 M2 M3 M4 Owens and Phillips [36]

F� 5.9424 5.9455 5.9469 5.9473 5.9474
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given above, the drag factor is found to be F� ¼ 5:9474—1:9590ðDSmin=RÞ2:16 and the zero mesh size drag factor is in excellent
agreement with the value of Owens and Phillips [36]. The convergence of the error in the drag factor is also shown with the
mesh refinement in Fig. 5 using the mesh independent drag factor.

The second set of validation cases corresponds to the flow around a rigid sphere undergoing sinusoidal transverse oscil-
lation in a cylindrical tube with a specified amplitude and frequency. For this problem, we used the meshes M1–M3 given in
Table 1 since the time dependent calculations are prohibitively expensive on mesh M4. The sphere center is oscillating sinu-
soidally such that the location of the sphere center is given by x ¼ ½U0=x�sinðxtÞ where t is the time and U0 is the maximum
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Fig. 5. The convergence of error in the drag factor F� with the mesh refinement for a free falling sphere in a cylindrical tube for the Stokes flow.
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velocity. The dimensionless parameters Re and St are based on the maximum velocity U0. The boundary conditions are set to
no-slip grid velocities on all boundaries. The calculations are first carried out for very small amplitude oscillations where the
non-linear convective terms can be neglected and analytical solutions become possible. Mei et al. [31] have presented solu-
tions for the motion of a sphere oscillating with a small amplitude inside a cylindrical tube. The present numerical results
with Dt ¼ T=200 are compared with the results of Mei et al. [31] for a Stokes number � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
StRe=4

p
¼ 64 by setting Re ¼ 40

and St ¼ 409:6. The comparison of the axial velocity component along the center line is given in Fig. 6 and from the com-
parison, we can see that the present numerical results on the meshes M2 and M3 are almost identical with the finite differ-
ence solution of Mei et al. [31]. Although, the authors presented an asymptotic solution and a good agreement is seen within
the Stokes layers, such a solution does not satisfy the mass conservation along the centerline and significant differences are
observed outside the Stokes layers. In addition, we also present numerical results with a larger displacement of 0:5R where
u-velcoity

r/R
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Fig. 6. The comparison between the present simulations and the results of Mei et al. [31] (asymptotic solution (�) and finite difference solution (—)) for the
u-velocity component on the centerline.
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the non-linear terms no longer be neglected and the GCL can be verified. The dimensionless Stokes number is taken to be
� ¼

ffiffiffiffiffiffi
20
p

by setting Re ¼ 40 and St ¼ 2. The computed drag coefficient is given as a function of time in Fig. 7 on meshes
M1–M3 and the plotted curves are almost indistinguable from one another. For more precise comparison, the maximum va-
lue of the drag coefficient for each mesh is provided in Table 4. The computed contours of u-velocity component with
streamlines are also given at the several time levels t ¼ 10p; t ¼ 10pþ T=4; t ¼ 10pþ T=2 and t ¼ 10pþ 3T=4 in Fig. 8.
The streamlines indicate the formation of very large separation bubbles on the cylindrical tube wall. The temporal conver-
gence of the present method on deforming meshes is tested on mesh M2 by setting times steps Dt to T=100; T=200 and
T=400. The computed maximum drag coefficient corresponding to each time step is provided in Table 5 and the same
convergence analysis given above reveals that Cdmax ¼ 8:3443þ 2:5729Dt1:05. The estimated error in the maximum drag
coefficient is also plotted as a function of time step in Fig. 9 using the estimated maximum drag coefficient for Dt ! 0.
The first-order temporal accuracy established on the moving meshes should be expected since the satisfaction of the GCL
is enough to preserve first-order time-accuracy of the given scheme on a moving mesh [19]. The satisfaction of the GCL
can be easily verified by setting uniform boundary and initial conditions everywhere (u ¼ 1;v ¼ 0 and p ¼ 0) and solving
the flow field around the transversely oscillating sphere for several cycles. The calculations indicate that that the initial
RMS value for the GMRES solver is less than 10�13 and the iterative solver did not perform any iteration. Therefore, the uni-
form flow field is preserved up to machine precision and the numerical scheme actually obeys the GCL.

3.2. The flow around the hydromedusa A. victoria

In this section the flow pattern around the free-swimming medusa A. victoria is computed using the present ALE formu-
lation. The kinematics of the swimming hydromedusa A. victoria was obtained by direct video recordings obtained from Dr.
Sean Colin at Roger Williams University. A sample snapshot of the free-swimming hydromedusa is shown in Fig. 10. The
geometry of the medusa at each snapshot is approximated by NURBS curves and Fourier-series interpolation is used in time.
The maximum bell radius of the medusa is approximately Rmax ¼ 2:3 cm and the period of one cycle T is being approximately
equal to 1:16 s. The maximum contraction ratio of the bell margin is Rmin=Rmax ¼ 0:72. The kinematic viscosity of water is
taken to be l=q ¼ 1� 10�2 cm2=s. Although the medusa is capable of changing its body density compared to the density
of surrounding water, it is assumed to be equal to the density of water. To compute the velocity of the medusa, the following
equation of motion is solved in addition to the Navier–Stokes equations in a fully coupled form.
C d
V
dU
dt
¼ Fx ð28Þ
where V is the volume occupied by the medusa ðV ¼ 9:78 cm3Þ, U is the instantaneous velocity of the medusa mass center in
a motionless frame and Fx is the total force acting on the medusa in the axial direction given by
Fx ¼
2p
Re
�
I
ðrpÞdr þ

I
r
@u
@x

� �
dr �

I
r
@u
@r

� �
dx

� �
ð29Þ
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Fig. 7. Time variation of the drag coefficient for an oscillating sphere in a circular tube at Re ¼ 40 and St ¼ 2 with Dt ¼ T=200.



Table 4
The convergence of the maximum drag coefficient with the mesh refinement for an oscillating sphere in a circular tube at Re ¼ 40 and St ¼ 2 with Dt ¼ T=200.

M1 M2 M3

Cdmax
8.3434 8.3770 8.3883

Fig. 8. The sequences of u-velocity component contours with streamlines around a transversely oscillating sphere in a cylindrical tube at times t ¼ 10p [a],
t ¼ 10pþ T=4 [b], t ¼ 10pþ T=2 [c] and t ¼ 10pþ 3T=4 [d] on mesh M3.

Table 5
The temporal convergence of the maximum drag coefficient on mesh M2 for an oscillating sphere in a circular tube at Re ¼ 40 and St ¼ 2.

Dt T/100 T/200 T/400

Cdmax
8.4120 8.3770 8.3601
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Although the above equations between the medusa velocity U and the Navier–Stokes equations are decoupled they are cou-
pled through the Dirichlet boundary condition on the medusa surface. Two different computational meshes have been con-
sidered in order to investigate the mesh dependency of the present solutions: a coarse mesh M1 with 63,099 vertices and
62,610 quadrilateral elements and a fine mesh M2 with 205,714 vertices and 204,784 quadrilateral elements. The successive
meshes are generated by multiplying the mesh sizes by 1/2 in each direction and the meshes are stretched next to the me-
dusa surface in order to resolve the viscous flow within the boundary layer as it may be seen in Fig. 11. The rectangular far



Fig. 10. A snapshot of a free-swimming hydromedusa Aequorea Victoria. (From Dr. Sean Colin at Roger Williams University).
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Fig. 9. The temporal convergence of error in the maximum drag coefficient for an oscillating sphere in a circular tube at Re ¼ 40 and St ¼ 2 on mesh M2.
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field computational domain boundary starts 24Rmax upstream of the medusa and ends 64Rmax downstream of the medusa.
The lateral far field boundaries are 24Rmax away from the medusa centroid. The meshes are deformed in every time step using
the scheme described in Section 2.3 and the coarse mesh M1 corresponding to the minimum bell diameter is shown in
Fig. 11(b). It is remarkable that even for such a large mesh deformation, the final mesh still remains to be valid. However,
the solution of the Laplace equation for the same problem results in entanglement of elements. The algebraic linear systems
are solved using the GMRES algorithm [40] preconditioned by the restricted additive Schwarz algorithm and within each
sub-block an ILU(5) preconditioner with reverse Cuthill-McKee ordering [11] is used. The relative residual is set to 10�8.
The time-dependent calculations on mesh M1 converge within approximately 60 iterations per time step and require
approximately 5 s to construct and solve the fully coupled Navier–Stokes equations on the IBM Machine Bluefire using 8
nodes. Meanwhile, the calculations on mesh M2 converge within approximately 140 iterations and require approximately





Fig. 12. The sequences of vorticity contours around a free-swimming hydromedusa Aequorea victoria taken at times t ¼ t0 [a], t ¼ t0 þ T=5 [b], t ¼ t0 þ 2T=5
[c], t ¼ t0 þ 3T=5 [d], t ¼ t0 þ 4T=5 [e] and t ¼ t0 þ T [f] on mesh M2.
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the wake structure depicted by Dabiri et al. in Fig. 3 of [12]. The time variation of the thrust coefficient, the skin friction
drag coefficient and the total drag coefficient are also shown against time in Fig. 16 and the symbols ‘‘�” represent the
time levels corresponding to Figs. 12 and 13. As it may be seen, the skin friction acts always in the direction against
movement. Although the trust coefficient generally acts in the direction of motion, we observe negative effects during
the end of the bell contraction phase and just before the end of the bell relaxation phase. The maximum trust is seen
to appear during the formation of the starting vortex ring at t ¼ 34:10 s. At this point the viscous drag force is also rel-
atively very large. The trust observed during the bell relaxation phase around at t ¼ 34:58 s is due to the paddling mo-
tion of the bell margin.

The Froude efficiency [28] is used to evaluate and compare the propulsion efficiency and it is defined as:
g ¼ hTihUihPi ð30Þ
where hTi is the average trust due to the pressure term and hPi is the average total power supplied by the medusa for one
cycle. The work done by the medusa is computed as a time integral of the power output from its surface to the surrounding
fluid:



Fig. 13. The sequences of u-velocity component contours with streamlines around a free-swimming hydromedusa Aequorea victoria taken at times t ¼ t0

[a], t ¼ t0 þ T=5 [b], t ¼ t0 þ 2T=5 [c], t ¼ t0 þ 3T=5 [d], t ¼ t0 þ 4T=5 [e] and t ¼ t0 þ T [f] on mesh M2.
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hPi ¼ 1
T

Z t0þT

t0

I
n � ðr � uÞdSdt ð31Þ
where n is the surface normal vector, r is the stress tensor including the pressure term and u is the velocity vector on
the deforming body surface. The propulsion efficiency of the hydromedusa A. victoria on mesh M2 is computed to
be approximately 37% which is relatively lower than the values reported for most fishes [45] but higher than the
efficiency of microorganism at very low Reynolds numbers (for example, 2% for the bacterium Escherichia coli [8]).
The low value of the propulsion efficiency is due to relatively low Reynolds number at which the shed vortex rings
dissipate rapidly away from the hydromedusa and highly oblate shape of the hydromedusa. The calculations with
larger medusa size show significant increase in the medusa velocity indicating that the medusa may evolve much larger
sizes and still be able to move through the surrounding fluid. The present thrust mechanism may offer low speed
thrust and maneuvering capabilities for underwater vehicles and robots similar to the vortex ring generator in
Refs. [34,27].
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Fig. 15. The mesh convergence is given for the wake structure behind a free-swimming hydromedusa Aequorea victoria on meshes M1 [a] and M2 [b].
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4. Conclusions

In the present work, a new geometrically conservative arbitrary Lagrangian–Eulerian formulation is presented in the
swirl-free cylindrical coordinates. The continuity equation is satisfied exactly within each element and a special attention
is given to satisfy the geometric conservation law at the discrete level. The present ALE method is validated for the steady
and oscillatory flow around a sphere in a cylindrical tube and applied to the investigation of the flow patterns around a free-
swimming oblate hydromedusa A. victoria. The present results are, as far as we are aware, the first numerical calculations
towards understanding the underlying propulsion mechanisms of an oblate medusa. The primary calculations indicate
the shed of the opposite signed vortex rings very close to each other and the formation of large induced velocities along
the line of interaction while the ring vortices moving away from the hydromedusa. These numerical observations are in
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accord with the experimental results available in the literature. In addition, the propulsion efficiency of the free-swimming
hydromedusa is computed and its value is compared with values from the literature for several other species.
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